近日,我校材料科學(xué)與工程學(xué)院光熱轉(zhuǎn)換材料功能化調(diào)控及應(yīng)用創(chuàng)新團(tuán)隊(duì)在材料學(xué)國(guó)際頂級(jí)期刊《Materials Today》上發(fā)表了題為“Engineering thin water film and cluster evaporation towards extraordinarily high 2D solar vapor generation”的研究性論文。王成兵教授為論文通訊作者,汪帆博士(已畢業(yè),目前在青海大學(xué)工作)為論文第一作者,陜西科技大學(xué)為唯一署名單位。

傳統(tǒng)太陽(yáng)能蒸發(fā)器通常采用多孔結(jié)構(gòu),依賴(lài)毛細(xì)作用將水從底部輸運(yùn)至蒸發(fā)界面。然而,該結(jié)構(gòu)中存在的大量水體在加熱過(guò)程中會(huì)引發(fā)顯著的寄生熱損失,嚴(yán)重制約蒸發(fā)效率的提升。因此,適當(dāng)減少蒸發(fā)器內(nèi)的水含量,有望更好地匹配光熱轉(zhuǎn)換所產(chǎn)生的熱量與蒸發(fā)過(guò)程所需的能量。目前常見(jiàn)的解決方案是將蒸發(fā)器置于織物包裹的隔熱基材上,以避免與本體水直接接觸。然而,織物本身所形成的類(lèi)水體界面仍會(huì)導(dǎo)致不可避免的熱傳導(dǎo)損失。此外,在分子層面上,液態(tài)水蒸發(fā)必須破壞其氫鍵網(wǎng)絡(luò),該過(guò)程所需能量較高,從根本上限制了蒸發(fā)速率的進(jìn)一步提升。因此,開(kāi)發(fā)能夠協(xié)同利用薄層水膜并優(yōu)化水蒸發(fā)行為的新型蒸發(fā)器,已成為解決上述問(wèn)題的關(guān)鍵方向。
為此,王成兵教授團(tuán)隊(duì)提出了一種將水膜與團(tuán)簇蒸發(fā)相結(jié)合以實(shí)現(xiàn)高效蒸汽生成的策略。通過(guò)激光蝕刻在鋁片上形成微網(wǎng)絡(luò)結(jié)構(gòu),并負(fù)載PPy和SiO?。隨后,組裝了帶有濃鹽水流通通道的二維金屬蒸發(fā)器(F–S–Al)。水以層狀水膜的形式沿微網(wǎng)絡(luò)結(jié)構(gòu)擴(kuò)散。同時(shí),在毛細(xì)力的作用下,它沿著負(fù)載有PPy和SiO?的突起表面爬升,形成十微米級(jí)別的薄水膜。此外,PPy和SiO?的納米孔通過(guò)受限空間效應(yīng)促進(jìn)了團(tuán)簇水的形成。分子動(dòng)力學(xué)模擬揭示了團(tuán)簇水的蒸發(fā)過(guò)程。更重要的是,通過(guò)收集傳統(tǒng)水蒸發(fā)以及P–Al和S–Al界面蒸發(fā)系統(tǒng)對(duì)原始LiCl溶液(50 g L?1,100 g L?1)進(jìn)行脫鹽后的冷凝水中Li?濃度的變化,驗(yàn)證了團(tuán)簇水的存在。最終,該蒸發(fā)器在1.0個(gè)太陽(yáng)光照下實(shí)現(xiàn)了90.8%的效率和4.05 kg m?2 h?1的優(yōu)異二維蒸發(fā)速率。此外,即使在處理15.0 wt%的模擬海水進(jìn)行脫鹽時(shí),該蒸發(fā)器也能保持3.57 kg m?2 h?1的高蒸發(fā)速率且無(wú)鹽沉積,表現(xiàn)出優(yōu)異的抗鹽能力。這種利用超薄水膜和團(tuán)簇蒸發(fā)的太陽(yáng)能驅(qū)動(dòng)蒸發(fā)器,在太陽(yáng)能驅(qū)動(dòng)蒸汽生成方面展現(xiàn)出巨大的潛力和廣闊的應(yīng)用前景。

超高蒸發(fā)速率2D金屬基蒸發(fā)器的設(shè)計(jì)理念
王成兵教授領(lǐng)導(dǎo)的光熱材料的功能化調(diào)控與應(yīng)用創(chuàng)新團(tuán)隊(duì)在2025年發(fā)表多篇高水平學(xué)術(shù)論文,進(jìn)一步提升了我校在光熱材料研究領(lǐng)域的國(guó)際影響力。
(1) Fan Wang, Chengbing Wang,* Dan Wei, Guifeng Li, Wenhe Zhang, Zexiang Zhao Engineering thin water film and cluster evaporation towards extraordinarily high 2D solar vapor generation, Materials Today 2025, DOI: 10.1016/j.mattod.2025.09.023.
(2) Wenhe Zhang,? Chengbing Wang,*? Lu Wang, Fan Wang, Puxin Tan, Jinchi Ma, Jingjing Jin, Zhongrong Geng,* Hongyao Xie,* Li-Dong Zhao*, All-day freshwater and power generation via integrated photothermal-enhanced thermoelectrics and evaporation cooling, Energy & Environmental Science 2025, 18, 7916–7927.
(3) Bo Wang, Chengbing Wang,* Yang Li,* Jingjing Jin, Xuli Lin, Chenyi Shi, Bionic-design: Nature insight into solar interfacial evaporators, Energy & Environmental Science 2025, 18, 3432–3461. (Inside Front Cover)
(4) Puxin Tan, Chengbing Wang*, Dan Wei*, Fan Wang*, Zexiang Zhao, Wenhe Zhang, Laser processing materials for photo-to-thermal applications, Advances in Colloid and Interface Science 2025, 337, 103385.
(5) Lu Wang, Chengbing Wang*, Dingwen Yin, Wenhe Zhang, Puxin Tan, Zexiang Zhao, Jingjing Jin, Xiaoxue Wang, Surface water evaporators mimicking river transport: bridging water-energy conflict for crystallization-free hypersaline desalination, Water Research 2025, 287, 124416.
(6) Wenhe Zhang, Chengbing Wang*, Jingjing Jin, Lu Wang, Fan Wang, Zexiang Zhao, Zehua Zhang, Jinchi Ma, Photoelectric coupling enhanced absorbers for boosting thermoelectric generation, Journal of Materials Science & Technology 2026, 249, 99–108.
(7) Lu Wang, Chengbing Wang*, Wenhe Zhang, Hang Zhu, Jingjing Jin, Dingwen Yin, Wanda Liao, Jinbu Su, Seamlessly integrated flexible Janus membranes enabling water-heat-salt synergy for solar desalination and wastewater treatment, Journal of Energy Chemistry 2026, 112, 701–711.
(8) Zexiang Zhao, Chengbing Wang*, Photothermal textiles achieve sustainable desalination, Device 2025, 3, 100776. (Invited Preview)
(核稿:伍媛婷 編輯:趙誠(chéng))